
J .  Fluid Mech. (1973), vol. 57, part 2, pp .  321-336 

Printed in Great Britain 
32 1 

An inviscidzmodel of two-dimensional vortex shedding 

By R. R. CLEMENTS 
Engineering Department, Cambridge University 

(Received 22 June 1972) 

An inviscid model of two-dimensional vortex shedding behind a square-based 
section is developed. The model uses a discrete-vortex approximation for the 
free shear layers. The motion of the shear layers is computed from the velocities of 
the discrete vortices, which in turn are derived through a Schwartz-Christoffel 
transformation of the section. The flow round the body is impulsively started 
from rest and initially develops symmetrically. The introduction of a small 
asymmetric disturbance results in asymmetric interaction of the shear layers 
amplifying into steady vortex-shedding motion. 

The model is shown to predict the form of vortex shedding, the Strouhal 
number and some other flow quantities to a good degree of agreement with 
experimental results. 

1. Introduction 
In this paper a two-dimensional inviscid flow model is proposed for representing 

the flow in the near wake of a bluff-based body. The model uses an approximate 
representation of continuous vortex sheets in inviscid flow that has been used in 
the past by a number of workers for a variety of problems. The first use of the 
method was by Rosenhead (1931), who investigated a model of an infinite per- 
turbed two-dimensional vortex sheet in which the sheet was represented by an 
array of line vortices with their axes in the direction of the vorticity of the sheet. 
Numerical analysis of this model then enabled Rosenhead to predic6 the rolling-up 
behaviour of the vortex sheet. Later improvements and additions to his work 
were made by Hama & Burke (1960) and Birkhoff & Fisher (1959). 

The same fundamental approximation for the vortex sheets was used in a 
model of a pair of infinite parallel vortex layers described by Abernathy & 
Kronauer (1962). In  their paper the four fundamental modes of perturbation of 
parallel vortex layers of opposite sign were obtained and the time development of 
one of these, the antisymmetric growing mode, then calculated numerically. 
The development and interaction of the two vortex layers was seen to give rise 
to the familiar von K&rm&n vortex street arrangement of localized concentrations 
of vorticity of opposite sign. 

The same approximation was again used by Gerrard (1967), Sarpkaya (1968) 
and Laird (1971), who all describe models of flow behind circular cylinders in 
which the separated shear layers are approximated by the arrays of line vortices. 
Sarpkaya’s method was to start the flow around the cylinder impulsively from 
rest and calculate the initial symmetric development. His work was later 
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extended by Davis (1970) to include the case of the asymmetric flow following 
some asymmetric disturbance of the original flow. Gerrard and Laird, however, 
chose to start their calculations from arbitrary flows which already included some 
vorticity in the flow field and calculate the subsequent periodic behaviour of 
these flows, Gerrard, Davis and Laird all found that periodic vortex shedding of 
the von K&rm&n pattern resulted in their calculations. 

The flow around a circular cylinder is an attractive one to deal with theo- 
retically since the boundary conditions on the cylinder can be easily satisfied by 
a simple image system. However, the points of separation of the shear layers from 
the cylinder are not fixed and this forced Gerrard, Sarpkaya, Laird and Davis to 
make various assumptions about the separation points in their calculations of 
the flow. The model described here is of the flow around a body with fixed separa- 
tion points, this shape being chosen to obviate the need for any assumptions to 
be made about the separation position. 

Other workers, notably Fromm & Harlow (1963), Thoman & Szewczyk (1969), 
Dawson & Marcus (1970) and Jordan & Fromm (1972), have approached the 
problem of periodic flow behind a bluff body by solving finite-difference analogues 
of the full Navier-Stokes equations in two dimensions. All of these works have 
an upper bound on the Reynolds number since the methods suffer from instability 
or require difference meshes of impracticably small size to obtain stability a t  high 
Reynolds numbers. I n  addition the solution of the complete equations is 
extremely costly in computer time. 

2. Mathematical description of the model 
The model proposed here is of the flow behind a bluff plane-based two- 

dimensional body having right-angle corners between the sides and rear face. 
The flow is assumed to remain attached on the side faces and to separate at  the 
corners. 

The model approximates the shear layers shed from the separation points of the 
body by arrays of line vortices. The motion of the shear layers in time is then 
represented by the evolution of the arrays of line vortices. The velocity of any 
vortex is the sum of the two-dimensional irrotational potential flow around the 
body and the velocity induced a t  the vortex position by all the other vortices. 
These velocities can be obtained by assuming the body to extend to infinity 
upstream (see figure 1) and then using a Schwartz-Christoffel transformation to 
project the exterior region of the body into an upper half plane with the boundary 
of the body along the real axis. 

The transformation from the physical ( z )  plane to the transformed ( A )  plane 
which transforms the rear corners of the body, z = i is, into the points h = 1 is 
given by 

1 (1) 
z = - (2is/n-) [sin-1 ( A )  +h( 1 - At);], 

or 2 = (2is/?r) {i log [ih + (1 - h2)q - A( 1 -A”+}. 

From the complex-variable theory it is known that the complex potential 
w = 4 + i@, where V 4  = u, the velocity, and @ is the stream function, is a trans- 
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FIGURE 1 .  General arrangement of axes. 

formal invariant. Also the flow field due to a vortex transforms into that due to 
a vortex of equal strength at  the transform of the vortex position. Hence the 
velocity at  any point of the fluid in the physical plane may be obtained by trans- 
forming the positions of all the vortices into the h plane, calculating the velocity 
a t  the transform of the required point and then returning this ve1ocit;y to the 
physical plane through the relationship 

dw dwdh 
u ( x )  - iv(2) = - = -- 

a x  ah a x  

If the point whose velocity is required is also a vortex position-the return to the 
x plane is complicated by Routh’s rule thus. 

As the potential is a transformal invariant 

i k  ik 
w&) - -1% 277 (2 - 21) = %,(A) --log 27r ( A  - hl), 

where wzl and wA, are the potentials a t  x1 and A, due to all causes except the 
vortex of strength 1% at zl, then 

21-2 
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then 
ik 

w&) = w A p )  -%log [ f ?(z1) + * ( z  - Z1)f"(Zl) + O(z - z1)2], 

dwzx - dwAldh iL 
dz d h  dz 277 

Then as z+zl and h-th, 

ik f " ( z l )  

The expression for dwAl/dh is composed of the sum of the velocities induced a t  
A, by all the other vortices and the free-stream irrotational flow velocity. The 
irrotational flow used was composed of two components, the forms of both in 
each plane being illustrated in figure 2 .  In  the physical ( z )  plane the first has a 
velocity U -t (U,, 0) far up- and downstream and the second has a velocity 
u = (0 ,  -pUo) a t  z = 0 and IuI -+O as 1x1 -+a. The second flow is a circulatory 
flow in the region of the base and was used to create the initial disturbance when 
the flow was started from rest (see 3 3). Hence for most of the calculation p = 0. 
The expressions for wfh) are given in figure 2. 

In  order to maintain the boundary condition of zero flow across the body 
boundary it was necessary to prevent flow across g = 0 in the h plane. This was 
equivalent to having image vortices in f < 0 of opposite sign and equal strength 
to those in < > 0. Hence if a t  any time there are vortices of strengths Ic, a t  positions 
z1 in the physical plane and zi = f(hi) the velocities [dwldz], are given by 

dw iki 1 +EL--- ik. 1 4SU,Ai 

j+i 

where K denotes the complex conjugate of A. 
However, from (l), 

dz ldh  = - (4is/7f) ( 1 - P)+, 

SO 
in 1 - dh 

dz 4s ( 1  - h2)6' 
- - f ' ( z )  = -- 

"I 

Non-dimensionalizing with respect to s and U, so that 

gives 
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FIGURE 2. (a )  First and ( b )  second irrotational inviscid flow and equivalent 
flow in transformed plane. 

Hence the vortex velocities oan be calculated for any given arrangement of line 
vortices in the physical plane. Two schemes for calculating the time development 
of the system were used: 

I x’(t + St)  = x’(t) +u’(t) St, 

y’(t + St)  = y’( t )  +v’(t) St;  

(4 b )  
x’(t + St) = x’(t) + +(3u’(t) - u’(t - S t ) )  St, 

y’(t + St) = y’(t)  + 3(3w’(t) - w’(t - St))  61. 
The first has an error in any time step O(St2) and the second an error O(St3). The 
calculations performed with each scheme are described below. 

The computations described in this paper were all carried out with the flow 
started impulsively from rest with no vorticity in the fluid. Vorticity, in the form 
of line vortices, was then introduced into +he fluid from the two separation points. 
At an early stage some form of asymmetry was introduced into the flow field for 
a short time and the flow then allowed to develop. The separation points 
( x  = k is)  are singularities of the transformation, the effect being, as seen in (3), 
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Two-dimensional vortex shedding 

V 

327 

A 

A A  

A AA 
A 

A 
A""," 

AAAA 

A 
A 

AV 

"% ,*: 
A" pa 

P 
A AA 

A *A A 

A A A  
A P  
P A  

AAA A 

A *A a 
A Av 

AA A 

A 

P A  A 

A A ~  A 

M A  

A 

AA A 

A AA 
A A  

A PA 

A 
A v  

A A A2AA 
A A  A 

FIGURE 3. Vortex arrangements over one full cycle of steadily periodic flow. 
A, positive vortices ; v, negative vortices. 

V 

V 

v 



328 R. R. Clements 

to cause infinite velocities a t  these points through the factor (1 - h2)-*. However, 
another consideration also enters here. Were the fluid viscous, the velocity at the 
separation points would be zero to satisfy the no-slip condition, so the velocity 
with which the shear layer and hence the vortex in the model leaves the separa- 
tion point is determined by the velocity Ui  at the outer edge of the boundary 
layer. This velocity also determines the rate of vorticity shedding into the shear 
!ayers through the relationship dr’/dt  = &Ui2. No attempt has been made to 
obtain any relationship between the ‘ boundary-layer thickness ’ used in the 
model and any physical flow parameter, instead a parameter 5 has been used 
such that, at  its departure from the separation point, a newly created vortex 
moves with the velocity of the fluid at the point x’ = rf: (1 + YI) i and has a strength 
k‘ equal to  C +U? 6t, where U,: is the velocity at  the point 2’ = -C (I  + &) i, 6t is the 
time step used in the calculation and the sum is over all the time steps since the 
last elementary vortex was introduced. The effect of varying the parameter Yf 
was then studied. Vortices were shed at  intervals equal to various integral num- 
bers of time steps, the interval remaining constant in any one calculation. 

The vortices themselves were introduced from the actual separation points 
z’ = k i .  In  some early calculations they were introduced into the flow at 
z’ = rf: (1 + &&) i but it was found that this resulted in a ‘leakage ’ of fluid into the 
base region through the gap between the vortex rows representing the shear 
layers and the body sides. The mass flow involved could be considerable as the 
singularities a t  the corners caused large velocities in the gap. 

Attempts were also made in early calculations to use the Kutta condition to 
determine the strength of newly introduced vortices but this gave rise to shear 
layers that separated a t  physically unrealistic angles to the free-stream direction 
and the attempts were not pursued. 

Two further features of the model should be mentioned. First, in the absence 
of viscosity and a no-slip condition on the body boundary, it was found that indi- 
vidual line vortices could approach too close to the rear face of the body and this 
caused them to have unduly high velocities along the body (owing to the presence 
of the images in the lower half h plane). This was avoided by removing from the 
calculation vortices that approached closer than 0.05s to the rear face. Physically 
this is equivalent to the destruction of vorticity in the shear layer by interaction 
with the boundary layer in that part of the cycle when the shear approaches very 
closely to the rear face. 

Second, in order to keep the computation time within reasonable bounds, it 
was necessary to restrict the total number of line vortices to be handled by 
massing the effects of clusters of vortices into an equivalent single vortex whose 
strength was the sum of the individual strengths and placed at  the centre of 
vorticity of the cluster. This process was invoked on clusters of elementary 
vortices that had formed close behind the body and passed off downstream 
beyond about X I S  = 4. For examples of the sort of systems so treated see frames 
5 and 9 of figure 3. The effect of this replacement is discussed below. These single 
equivalent vortices were retained in the flow throughout the subsequent calcula- 
tion although their effect on the flow in the base region diminishes as they get 
further downstream. 



Two-dimensional vortex shedding 329 

3. Calculations 
All the calculations described in this paper were programmed in Fortran and 

carried out on the Cambridge University Computer Laboratory’s Titan (Atlas 11) 
computer. Because of limitations on computing time available the computations 
were performed in blocks of 5 min duration and the results stored on magnetic 
disk file in between such blocks in a form that the programs could recover 
and use to continue the calculations. These periodic arrests were also used as an 
opportunity to carry out the replacement of large vortex clusters by their equi- 
valent single vortex as mentioned above. 

A large number of preliminary calculations were carried out to determine the 
optimum values of the parameter St and the interval between the introduction 
of successive elementary vortices. It was advantageous to make the latter fairly 
large as the time required to compute any set of velocities increases as the second 
power of the number of vortices involved. However, making the interval too 
large results in vortices of relatively large strength and wide spacing - a very 
crude approximation to the free shear layer. Similarly a large time step shortens 
the computation time but in this case the time step is limited by consideration 
of the ability of the vortices to follow the streamlines of the flow. Figure 4 illus- 
trates this. The solid lines are ‘true ’ streamlines of some steady curved flow. The 
broken line illustrates the path of a particle that proceeds with a constant 
velocity U’(t) for a time St, then with another velocity U’(t + St)  for another St 
and so on. It can be seen that the effect will be to follow a path of smaller curvature 
than the ‘true’ path. In  the model described here such a region exists in the 
corner formed by the back of the body and the free shear layer immediately 
after separation. If too large a time step St was used the elementary vortices were 
not able to follow the high curvature of the streamlines but broke through the 
line of vortices representing the emergent shear layer. 

Prom these considerations the preliminary calculations indicated that a value 
of St = 0.1 with two time steps between the introduction of successive vortices 
would produce satisfactory results with the first-order time scheme (equation 
( 4 a ) )  and that St = 0.16 with two time steps between vortices would produce 
equivalent or better accuracy with the second-order scheme described (equation 
( 4 b ) ) .  The step lengths are given in terms of non-dimensional time t ,  which is 
related to real time T by t = U,T/s. The second-order scheme was introduced 
during the work in order both to increase the accuracy and to reduce the compu- 
tation time involved in the calculations. Since the work reported here was com- 
pleted the programs have been modified to run on the University IBM 3701165 
computer. Computation times for a typical calculation are 2 h for the first-order 
scheme and 30 min for the second-order method on Titan and 1.5 min for the 
second-order method on the IBM machine. 

Many preliminary runs were also made to determine the importance of the 
size and type of the initial perturbation made to the symmetric flow. Amongst 
those tried were (i) a 20 % increase of strength of three successive vortices in one 
shear layer; (ii) a movement of 0.2s of three or four successive vortices in one 
shear layer either up, down or downstream; (iii) a circulatory motion. These were 
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FIGURE 4. Illustration of numerical error in vortex paths in carved streamlines. 

Interval 
between 

introduction 
Computation st Y I  of vortices 

A 0.1 0.1 2st 
B 0.1 0.2 26t 
G 0.16 0.1 2st 
D 0.16 0.4 2st 

TABLE 1 

Numerical 
scheme for 

time 
integration 

( 4 4  
(44 
(4b) 
(4 bf 

relatively small perturbations compared with the whole flow field. It was found 
that if the perturbations were introduced at  times of the order oft = 2.0 or more 
the subsequent development tended to be fairly symmetric and amplification of 
the disturbance was too slow to be computationally feasible. If the disturbance 
was introduced earlier at  around t = 1.0, when there were relatively few vortices 
in the flow, then since most of these would be affected by the disturbance the 
amplification was much faster. Similarly, it was found that the fastest amplifica- 
tion resulted from a downstream disturbance of one of the shear layers and that 
disturbances in the positive or negative y direction tended after a time to return 
to the original line of the shear layer but with a downstream perturbation present. 
All these are somewhat qualitative results but the indications were that the 
actual form of the initial disturbance had little bearing on the form of the 
subsequent development but affected the time needed for the disturbance to 
build up. 

From these preliminary investigations emerged the circulatory disturbance 
used on three out of four of the final computations that were made. This disturb- 
ance consisted of the second form of steady irrotational flow mentioned in the 
previous section with the size of the factor p determined by 

= (Kl sin(&) ( t  < 3), 

( t  3 3). 

When these preliminary investigations were complete four major computations 
were performed. For brevity these will be referred to as A,  B, C and D and the 
characteristics of each are given in table 1. 
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FIGURE 5. Comparison of u. and v velocity components at  x/s = 3.0 due to shed vortex 
cluster (ul, wl) and equivalent single vortex (u2, v2) at x/s = 5.17. 

For computation A the initial disturbance used was a downstream displace- 
ment of 0-2s of three vortices of the lower shear layer at  t = 1.0, and for B, C and 
D the circulatory disturbance defined above was used. 

A separate study was made of the effects of replacing the clusters of elementary 
vortices that separated from the near-wake flow (as in figure 3) by their equiva- 
lent single vortex. Calculations were made of the x and y components of the 
velocity due to the cluster and that due to the equivalent single vortex a t  points 
along a line x = constant at  a distance 2s upstream of the position of the single 
vortex and the two quantities compared. It can be seen from figure 3 that 2s is 
a typical separation between the centre of such a cluster and the rest of the 
elementary vortices at the time of replacement. The difference between the two 
sets of velocities induced at  the points on the line x = constant would decrease 
as the vortex cluster moved downstream. The results of a typical calculation are 
shown in figure 5. As a second approach to this aspect of the problem, a compara- 
tive run was made in which the results of replacing a cluster and not doing so 
were compared at  a time t = 1.5 later. The effect on the remaining vortices in the 
field near to the body was negligible. 



332 R. R. Clements 

I I I I I I 
0 10 20 30 40 50 

t 

FIGURE 7. Rate of shedding of  vorticity into shear layers from top and 
bottom separation points. 

4. Results and comparison with experiment 
The development of the flow after the impulsive start was similar in all of the 

calculations performed. There was an initial period after the perturbation was 
applied during which the asymmetry in the flow was amplified, leading to a final 
quasi-steady periodic flow in which vortex shedding occurred. The length of this 
initial period varied considerably with the size and type of initial disturbance. 
No systematic investigation of the exact relationship has been undertaken; 
rather, two quickly amplifying cases have been treated and the eventual periodic 
flow studied. In  all of the major computations mentioned in the previous section 
the initial disturbance was steadily amplified by the flow with shedding of small 
vortices of increasing strength until the steadily periodic flow was attained, and 
this flow was then followed in the computations for two to four full cycles. 
Figure 3 shows the elementary vortex configurations for the final full cycle of 
computation B. Replacement of a shed system of elementary vortices by their 
equivalent single vortex, as described above, takes place just before frame i and 
between frames 5 and 6. 

Figure 6 (plate 1) shows some schlieren photographs of the vortex shedding 
behind a blunt-based section of chordlbase height ratio 20.0 obtained by 
Archibald (197 I ,  private communication) by injection of freon through holes in 
the rear face of the section. It can be seen that the agreement between the shapes 
of the shear layers predicted by the calculations and those seen in the experiment 
is extremely good. 

Figure 7 shows the rate of shedding of vorticity into the two shear layers as a 
function of time for computation B. It can be seen that this rate varies periodi- 
cally and in fact the distinction between that part of the shear layer that feeds 
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FIGURE 8. Mean velocity coinponents on x / s  = 0. x , experimental points. 
Curves A ,  B ,  C and D are computational results. 

into one vortex and that part which rolls back into the next vortex from the same 
side occurs a t  a minimum of vorticity strength in the shear hyer. Frames 2 and 7 
of figure 3 show the distinction occurring in the top and bottom shear layers 
respectively. The graph of figure 7 and similar graphs for the other computations 
were used to determine the Strouhal number of the shedding in each case. The 
Strouhal numbers were taken as the inverse of the average period of the last two 
full cycles of shedding and were non-dimensionalized with respect to the base 
height 2s and the free-stream velocity U,. The results for computations A ,  B, C 
and D were 0.240,0.240,0.234 and 0.246 respectively, which agree well with the 
value 0-24 obtained by Bearman (1965) for the Strouhal number of shedding 
behind a bluff-based section of chord/base height ratio 6.0 at Reynolds numbers 
of 1.4 x lo5 and 2.45 x lo5. 

When the final steadily periodic flow had been reached in all the major compu- 
tations, vaIues were obtained of the total velocity at various points in the flow 
field for comparison with experimental observations. For positions sufficiently 
removed from the shear layers the effect of the fundamental approximation of 
the model, the replacement of the shear layers by arrays of elementary line 
vortices, should be negligible. Hence, although one could not hope to predict the 
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FIGURE 9. Amplitude of velocity fluctuation on X I S  = 0. Notation as in figure 8. 

signal that would be obtained from a hot wire anywhere within the wake, one 
would expect reasonable agreement at  positions outside the wake. Values of the 
total velocity over the last full cycle at positions z' = 1*28i, 1.4i, 1.8i, 2.2i, 2.6i, 
3.0i and 7.0i were obtained for the four major computations. These seven sets of 
velocities were used for comparison with an experiment in which hot-wire 
measurements of the total velocity and the amplitude of velocity fluctuations 
were made a t  positions in the plane of the base of a blunt-based section of 
chord/base height ratio 6-0 at a Reynolds number of 2.08 x lo4. The hot wire wax 
calibrated and then mean and r.m.s. measurements of the signal were made and 
the mean velocity and the amplitude of velocity fluctuations derived. These are 
compared with the results obtained from the calculations in figures 8 and 9. I n  
both the calculations and the experiments the velocities were expressed as a, 
fraction of the velocity a t  the point 2' = 7.0i in order to maintain comparability. 
It can be seen that the model predicts the mean velocity extremely well for a 
distance y/s greater than about 0.6 from the separation point. Nearer than this 
the effect of the boundary layer, which is not modelled in the computations, 
causes the calculated values to exceed the experimental ones. The agreement 
between the amplitudes of oscillation is not so good although the general shape 
and trend of the calculated curves agrees with the experimental results. 

Another effect that is apparent in figure 3 is the shape of the clusters of 
elementary vortices as they move away from the immediate neighbourhood of 
the base of the body. At first sight they appear to  be extremely elongated in the 
cross-wake direction. It must be borne in mind, however, that the elementary 
vortices of the clusters are not all of equal strength. The stream function due to 
one such cluster from computation B taken in isolation has been calculated, and 
the streamlines, with elementary vortex positions shown for comparison, are 
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FIGURE 10. Streamlines due to shed vortex cluster in isolation. (The cross 
indicates the centre of vorticity of cluster.) 

presented in figure 10. It can be seen that even such a wide spatial distribution of 
vorticity gives streamlines that have still not too greatly departed from the 
circular ones arising from an idealized concentrated point vortex. Similar calcula- 
tions performed on several systems of elementary vortices taken from the other 
computations confirm this finding. 

A number of workers have, in the past, investigated the relationship between 
the amount of vorticity generated in each shear layer before separation and the 
amount that finally appears in the fully formed street vortices further down- 
stream for various bluff bodies. Page & Johansen (1927) found the latter to be 
between 51 yo and 65 yo of the former for a flat plate set at  right angles to the 
free-stream Aow. Wood (1964) investigated the same ratio for a truncated aero- 
foil of chordlbase height ratio 3.6 with base bleed and found that it decreased 
from 50% at zero bleed as the bleed rate increased. Nielsen (1969), in a later 
experiment, found that the percentage was 66 % for the same body with no base 
bleed. The computations described in this paper show amounts varying between 
87 % and 94 yo of the shed vorticity in the shear layers appearing in the rolled-up 
vortices. The loss of vorticity in the computations arises from two mechanisms: 
first, the destruction of vorticity at the rear face of the body mentioned in $j 2, 
and second, a small amount of cancellation between elementary vortices of 
opposite sign which enter the same rolled-up vortex core. The discrepancy 
between the computations and the experiments mentioned can probably be 
accounted for by the fact that the computations are essentially inviscid and the 
mechanism whereby much of the vorticity is lost must be viscous in nature. 
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5. Conclusions 
The model proposed in this paper has been shown to be capable of predicting 

the dominant features of the flow behind a bluff-based section. The form of the 
vortex shedding, the Strouhal number and some mean flow velocities near to but 
outside the wake are all predicted to a high degree of accuracy. The model is, 
however, inviscid and hence cannot be expected to predict flow situations which 
are governed by predominantly viscous mechanisms. The underlying principle 
of the model could provide a powerful tool for the prediction of flows in a large 
number of other similar situations at  relatively little expense of computer time 
and could also enlarge understanding of bluff-body flows by making possible the 
isolation of viscous-dominated flow features from inviscid flow features. 

The author would like to thank Dr D. J. Maull, who supervized this work, for 
his many helpful suggestions and enlightening discussions. The support of the 
S.R.C. in giving a maintenance award is acknowledged. 
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